Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo.
نویسندگان
چکیده
The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the gamma2 subunit of type A GABA receptors (GABA(A)R), which is required to anchor GABA(A) receptors to the postsynaptic scaffold. Enhanced green fluorescent protein (EGFP)-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by vesicular GABA transporter immunoreactive puncta. ICL expression completely blocked GABA(A)R-mediated transmission in 36% of transfected neurons and significantly reduced GABA(A)R-mediated synaptic currents relative to AMPA receptor-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABA(A)R-mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of gamma2 subunit-containing GABA(A)R. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors, which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo.
منابع مشابه
Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo.
Glutamatergic retinotectal inputs mediated principally by NMDA receptors can be recorded from optic tectal neurons early during their morphological development in Xenopus tadpoles. As tectal cell dendrites elaborate, retinotectal synaptic responses acquire an AMPA receptor-mediated synaptic component, in addition to the NMDA component. Here, we tested whether glutamatergic activity was required...
متن کاملAMPA receptors regulate experience-dependent dendritic arbor growth in vivo.
The size and shape of neuronal dendritic arbors affect the number and type of synaptic inputs, as well as the complexity and function of brain circuits. In the intact brain, dendritic arbor growth and the development of excitatory glutamatergic synapse are concurrent. Consequently, it has been difficult to resolve whether synaptic inputs drive dendritic arbor development. Here, we test the role...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملInsulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity, and Circuit Function In Vivo
Insulin receptor signaling has been postulated to play a role in synaptic plasticity; however, the function of the insulin receptor in CNS is not clear. To test whether insulin receptor signaling affects visual system function, we recorded light-evoked responses in optic tectal neurons in living Xenopus tadpoles. Tectal neurons transfected with dominant-negative insulin receptor (dnIR), which r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 15 شماره
صفحات -
تاریخ انتشار 2009